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The problem of stability of weakly compressible gas flow in a rough pipe is 
considered in linear approximation with respect to stationary waves. It is 
assumed that the laminar velocity profile, roughness, and velocity perturbat- 
ions are axisymmetric. The critical Reynolds number is obtained in the form 
of function of the root-mean-square roughness amplitude. 

In the considered flow an undamped stationary wave is formed at lowest Reynolds 
numbers as the result of interaction between a convective unsteady vortex wave and 

the acoustic wave which propagates upstream [l]. This is due to that the remaining 

waves propagating upstream are damped considerably quicker than the acoustic wave. 

Because of this we consider here the interaction between the vortex and the acoustic 

waves. In order to eliminate the effects produced by sound reflection from the pipe 
inlet boundary conditions that ensure the absence or reasonable reduction of sound ref- 
lection there. According to current concepts the Poiseuilleflow is convectively stable 
with respect to axisymmetric perturbations. Hence it is possible to stipulate the damp- 

ing of perturbations in the downstream flow. 

1. The equations that will be considered below must define the vortex and the 
acoustic waves and, also, the interaction between these at M < 1 (M is the Mach 

number). Assuming that pipe wall has adiabatic properties, the NavierStokes equations 
in dimensionless form are 

$+ grad( v,.v)-trotv,,xv+roLvxv,=-gradP++Av (1.1) 
div v = - ib%P / dt 

where the basic dimensions are the flow rate and the pipe mean radius; v,, is the 

steady solution of the NavierStokes equation. Terms of order M2 / R are omitted in 
Eqs. (1. l), and in the equation of continuity the term M2 (v,.grad p) is omitted, 

This is justified since for an acoustic wave P N pMP, while aP / dt - pP (p = 
Pe”‘). 

We seek a solution of system (1.1) in the form of a standing wave 

P = Pepf, v = vePt (1.2) 

pv+grad(vO.v)+rotv,,xv+rotvxv,=-gradP+$-Av (1.3) 

div v = --M2pP; v (X, r (X)) = 0; x 7% 00, v 3 0 

where X and rare the longitudinal and radial coordinates, respectively, and r (X) is 
the coordinate of the pipe wall that represents a stationary random function with 
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characteristic amplitude a, scale A , and spectral density 

The homogeneous boundary conditions at the pipe inlet cross section that define the 

absence of sound reflection there are given in sect. 2. 

The state of stability is understood here in the meaning given in [21, i. e. if for au 

pit defined by the problem (1.3) the condition Re pi < 0 is satisfied, the laminar 
flow is called stable. 

The problem is considered with the following constraints on a and A: 

f rot v,, 1 A” / v < 1, ‘I r’ (xi) I<> a / A g 1 (1.5) 

The first condition implies that the flow over the wall irregularities is viscous (V 
is the kinematic viscosity coefficient, rot v. , and A are here dimensional). The 
second condition is unrelated to physical constraints but makes possible a considerable 

simp~fication of the problem. 

2. It is assumed that Eq. (1.3) can be expressed in terms of coordinates 

8, 2= cp (X9 r>, Y = 9 (X7 f) 

(* I i?r = -rvx, $ V, 0) = 1/%, V (X9 7. GV> = 0) 

where 8 is the angle, and 9 and 9 are the potential and the stream function of the 
corresponding stationary problem for an incompressible inviscid medium. 

we compose vector A = {Al, A2, A3, A*) as follows (he, h,,andh, are Lamk 
coefficients): 

~~~V~ = A”, P = A”, ~~~Z~U~, = A3, 
a.43 

(1 - 2y) z$- - yj-g- == A4 

In the new notation problem (1.3) may be written as 

8A / do = LA = HA -I- H,A , H = lim L, a -+ 0 (2.1) 

y =: 0, Al =2 A3 = 0; X -+ CQ, A 3 0 

5 = 0, dAildx - &A” = 0, i = 1, 2 

The form of operators Hand $3; is determined by formulas (1.3) and the form of 

a ; J,, is the wave number of the acoustic wave that propagates upstream. 
The solution of problem (2.1) is sought in the form of superposition of eigenvectors 

of operator H 

h = xCi.Ii, I$& -_ hi,\,; 2, = 0, Ai1 =: Ai” zz () (2.2) 

From (2.1) we have 
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where the subscript k denotes waves propagating downstream and Ri are eigenvectors 
of the operator conjugate of W. 

As in [3], we consider the sought solution of the problem as the limit solution of 
problem (2.3) for 

k = 1,2, . , . , N, I= -34, --N + 1 ,**** N, N-t 00 (2.4) 

A problem of the form (2.3), (2.4) was considered in [4] whose results will be used 

subsequently. To write the equation for the eigenvalue curve of problem (2.3), (2.4) 
it is necessary to know two wave numbers Al and hs which in the considered interval 
satisfy the condition 

Re (h, - hs) = 0 (2.5) 

and the expressions for the coupling coefficients 

In the considered case hI is the wave number of the unstable vortex wave. 
The results obtained in the considered problem using the formalism of [4] are only 

valid when the vortex and acoustic waves differ only slightly in the interaction region 

(at distances of order! A from the wall) for H, = 0 and N, # 0, which means 
that the wave must be of the form 

P-7) 

where fik are stationary random functions of amplitude or order unity and correlation 

dimension of order A. when k = 3 condition (2.7) need not be satisfied, since the 
third column of operator H, consists of zeros. 

The constraint on E can be established on the following considerations. we repre- 
sent the expression in the right-hand side of system (2.3) in the form 

If the sum in (2.8) corresponds ;o the considered here wave, we have 

where II, is the conjugate operator of N, . 
prior to proceeding any further we shall point_out that the amplitude of low-frequ- 

ency harmonics R,Rk is proportional to a VAa / A, and that of high-frequency 
harmonics is proportional to a r/x {see Sect% 4). The amplitude of low-frequency 

harmonics in (Ai, Rr&) is proportional to a 1/x; / A, and in (Di, JI, I&) is 
proportional to naJ/h. This yields the constraint 

EG$Z/A (2.9) 
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Since the mean pipe radius is considerably greater than the dimensions of wall 
surface imperfections, it is possible to consider the problem near the wall as a plane 
one in which he = 1, hx = h, = h-l. The equation for 

Q = SA’dy 

with condition (1.5) is of the form 

Th’TQ = 0, T = T& + G ; y = 0, Q = g = 0; y+ m, “yf , 1 

where the coordinates are stretched 1 / A -times and parameter A4 is normalized 

on unity when y --f 00, and y is measured from the wall. 
since Th2 - (a” / A?), hence Q = llzya (1 + o (a” / As)), A1 = y (1 i- 

o (a2 / A”)), and A4 = I + o (a2 / A2), which shows that condition ( %. 9) is 
satisfied. 

3. Let us derive the expressions for the eigenvectors appearing in (2.6). In 

accordance with formulas (2.1) and (2.2) the eigenvectors are calculated on the 

assumption of smooth pipe wall. The derivatives of uwith respect to z (U is the long- 
itudinal velocity component in the stationary solution’of the Navier-Stokes equation 
for a pipe with smooth wall) are omitted in calculations. Moreover, compressibility 
is neglected in the calculation of A,, and B1 while in the calculation of AB, 
and J3s we neglect convection terms, since the respective corrections are small, 
namely 

Al3 s - hlcpl, Al4 z (I - 2~) ,t$ + h2q, 

A31 s u3 - M, A32 z I, A33 - M” -j$ I’*, I I’ A34 G (1 - 2y)+$ 

where ‘PI is the eigenfunction of the vortex wave whose characteristic scale is of 

order (u’)-“‘4R-Q, and the equation for ip1 appears in [5]. The expression for up 

whose characteristic measure is of order 1 pR (-‘/2 - (~‘)-~‘rH-‘/r; is given in [I]# 

BI, and B, are determined by formulas 

&B~=I~B~; Y= 0, Bi2 = = 0 

Bll s Bla z R a (1 - 2Y) TPa 
+Y 
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B 3’s1, B3=su3, B33-M -$ ‘lx, I I B34-~l$l"' 

where II is the conjugate operator of Hand ‘ps satisfies the equation conjugate 
to the equation for ‘pl. 

4. The definitionof roughness (1.4), conditions (1.5), and the eigenvector properties 

indicated in Sectn. 3 imply that in calculating H, it is possible to disregard convec- 

tion terms. Representing Eq. (1.3) in curvilinear coordinates (see Sectn. 2) and sett- 

inghs = 1, IZ, = h, = h-r (A < 1) we obtain 

0 M2p (1 - K2) 0 0 

0 0 0 

HI= o 

-g(h2- 1) 

0 0 0 

0 R (1 - E2)$ 0 (Jr2 - 1) &(h2 - 1) 

(4.1) 

Using formulas of Sectn. 2, formula (4. l), and omitting small terms we obtain 
expressions (2.6) of the form 

where F (z) is a stationary random process whose intensity I we express in terms of 

roughness characteristics. since A < 1, we determine F by considering the plane 

problem which is the same as that of determination of the potential over the conduct- 

ing rough surface. We seek a solution in the form of series in the small ratio u / A c 

with an accuracy within the first term (f (4 is the Fourier transform r (X)) 

I--=y++l, Y1=Sf(a)exp(i~-l~lI)da 

X$z++r, X1= f(a)sign(a)exp(iaz:-_la)y)da s 

h2 - 1 = ((%)a + (Gj’,-’ S _ 2 % + 3 ($%)” - (z?)” 

using formulas (1.4) and (4.3) we obtain 

(4.3) 

(4.4) 
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5. Using formula (4.2) for the coupling constant (2.5) we obtain, in conformity 
with [4], the equation of the curve of eigenvalues of problem (2.3), (2.4). AS stated 
in sect. 2, this problem is in some sense equivalent to problem (1.3). 

‘The equation for the eigenvalue curve is of the form 

h, (x1) = h, (x2) = 0, x2 > q, h, = Re h, 

Equation (5.1) was solved numerically on a computer. First, d was calculated with 
fixed R and p and, then& = maxr, d2 (Re p = 0) was determined for fixed R . This 
made it possible to determine the critical Reynolds number R, by specifying It/’ and 

I 1 Parameters AI and ‘pr were determined by solving the linear spectral 
problem of the form defined in [5]. The computation program in [6] was taken as the 
basis for numerical solution of this problem. 

The velocity profile at the pipe inlet was 

calculated using equations of the boundary layer 

type of the form given in [5], and the numerical 
scheme developed in [‘!I. The Blasius solution 
was taken as the definition of the initial profile 

(z = X/R = 0). The obtained vel.ocity 
profiles are shown in Fig. 1 for z = 16. 10m4, 4. 
20.+ I and j5.‘iOG2 by curves 1, 2, and 3, re- 
spectively. 

Parameter b was determined in the interval 

D 05 7‘ 1 10 > 10w4R > 3 in the form of the analytic 

Fig. 1 
approximation 1/Z Ig b = 2 + 10b4R whose 

error in that interval does not exceed 3%. 

From this, using (4.4) we obtain 

R, = I-3.2 - Ig N - 3 Ig a - Ig (a i A)]. 10* 

This result is valid in the region where conditions (1.5) are satisfied, As a rough 

approximation it can be presented in the form R,A2 < 1. 
The authors thank A. G. Volodin for valuable advice on the numerical solution 

of the problem, and B. p. Kolobov for a number of remarks. 
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